
Continuous Vulnerability

Assessment Platform

Web App Pen Test

Report

test App 1

21 Oct 2024

Con�dential © 2024 White Rook Cyber

Copyright

This report is intended solely for the use of the individual or entity to

whom it is addressed. Unauthorised distribution, reproduction, or use

of this document, in whole or in part, is strictly prohibited. The

information contained herein is con�dential and may contain sensitive

information regarding security vulnerabilities and assessments.

For permission to use or distribute this document, please email

contact@whiterookcyber.com.au

© White Rook Cyber

contact@whiterookcyber.com.au

1300794777

Con�dential © 2024 White Rook Cyber 2

C
O
N
F
ID
E
N
T
IA
L

Document Details

Action Date

Completed On 21 Oct 2024

Generated on 30 Nov 2024

Con�dential © 2024 White Rook Cyber 3

C
O
N
F
ID
E
N
T
IA
L

Table of Contents

1. Introduction .

2. Executive Summary .

3. Application Info .

4. Technical Summary .

4. 1. A.12: Information systems acquisition, development, and maintenance . .

4. 1. 1 A.12.2.2: Control of internal processing .

4. 1. 1. 1 Application Error Disclosure .

4. 1. 2 A.12.3.1: Policy on the use of cryptographic controls .

4. 1. 2. 1 Possible BREACH Attack .

4. 1. 2. 2 Cookie set without 'HttpOnly' �ag .

4. 1. 3 A.12.5.4: Information leakage .

4. 1. 3. 1 Information Leakage via URL query strings .

4. 1. 4 A.12.2.1: Input data validation .

4. 1. 4. 1 Cross Site Scripting .

4. 1. 4. 2 MySQL Boolean-based Blind SQL Injection (SQLi) .

4. 1. 4. 3 HTML Injection .

4. 1. 5 A.12.2.4: Output data validation .

4. 1. 5. 1 Iframe Injection .

4. 1. 6 A.12.1.1: Security requirements analysis and speci�cation .

4. 1. 6. 1 High Memory Limit in PHP Info Page .

4. 1. 6. 2 X-Frame-Options header not implemented .

4. 1. 6. 3 Content Security Policy (CSP) header not implemented .

4. 1. 6. 4 allow_url_fopen Enabled in PHP Info Page .

4. 1. 6. 5 Weak MD5 Session Hash Algorithm .

4. 1. 6. 6 Cookie set without 'Secure' �ag .

4. 1. 6. 7 HTTP Strict Transport Security (HSTS) header not implemented .

4. 1. 6. 8 X-Content-Type-Options header not implemented .

6

7

10

11

11

11

11

14

14

16

16

16

19

19

21

23

25

25

27

27

28

29

30

31

31

32

33

Con�dential © 2024 White Rook Cyber 4

C
O
N
F
ID
E
N
T
IA
L

4. 2. A.10: Communications and operations management .

4. 2. 1 A.10.4.1: Controls against malicious code .

4. 2. 1. 1 Remote OS Command Injection .

4. 2. 1. 2 Blind Remote Code Execution .

4. 2. 1. 3 Local File Inclusion .

4. 2. 1. 4 Upload Temp Directory accessible is Everyone in PHP Info Page .

4. 2. 1. 5 Clickjacking .

4. 2. 1. 6 �le_uploads in on in PHP Info Page .

4. 2. 2 A.10.7.4: Security of system documentation .

4. 2. 2. 1 Directory Traversal .

5. Conclusion .

35

35

35

37

38

40

41

43

44

44

48

Con�dential © 2024 White Rook Cyber 5

C
O
N
F
ID
E
N
T
IA
L

Introduction

The data present in this document is the result of the penetration test conducted

on "https://beaglehack.com/". The test generates a checklist of potential

compliance issues by checking "test App 1" for vulnerabilities including insecure

data collection forms, insecure cookies, third-party links, cross site scripting

vulnerabilities, SQL injection, etc.

Using this data, you can then proactively �lter and organize identi�ed issues to

ensure that your organization's most critical regulatory compliance concerns are

addressed as soon as possible. While this information is intended to greatly

improve the ef�ciency with which you can remediate compliance issues, it does not

intend to represent the full scope of compliance with the General Data Protection

Regulation (EU) (GDPR) regulations.

These results are only a subset of the entire GDPR compliance. In addition, "White

Rook Cyber" holds no responsibility for any use or misuse of information presented

in this report.

The next section provides the non-technical team with a summary of all key

�ndings and relates the impact it will have on your business. Section 3 provides the

technical team with a detailed report of individual vulnerabilities along with its

mitigation procedures. This detailed report generated will help your development

team to improve the overall security of the system.

Con�dential © 2024 White Rook Cyber 6

C
O
N
F
ID
E
N
T
IA
L

Executive Summary

The chart, tables, and graphs displayed below is to provide you the summary of all

the vulnerabilities present in "test App 1" based on the status and severity. The

severity of each vulnerability is calculated based on its occurrence, frequency, and

impact upon the asset.

By examining these representations generated by "White Rook Cyber", you can

gain insights into state of "test App 1"’s current security posture.

Catalog

Status Count

New 35

Not Fixed 0

Reopened 0

Fixed 0

Graphical Summary

Vulnerability Distribution

Critical (28.0%)

High (9.0%)

Medium (48.0%)

Low (6.0%)

Very low (9.0%)

2

Con�dential © 2024 White Rook Cyber 7

C
O
N
F
ID
E
N
T
IA
L

Tabular Summary

Category Count

Critical 10

High 3

Medium 17

Low 2

Very Low 3

GDPR Compliance Summary

Sl No GDPR Sub-requirements PASS/FAIL

1 A.10.3.2: System acceptance PASSED

2 A.11.3.1: Password use PASSED

3
A.11.4.4: Remote diagnostic and con�guration port

protection
PASSED

4 A.11.4.6: Network connection control PASSED

5 A.11.5.3: Password management system PASSED

6 A.11.5.4: Use of system utilities PASSED

7 A.11.5.5: Session time-out PASSED

8 A.11.6.1: Information access restriction PASSED

9 A.11.6.2: Sensitive system isolation PASSED

10 A.12.1.1: Security requirements analysis and speci�cation FAILED

11 A.12.2.1: Input data validation FAILED

12 A.12.2.4: Output data validation FAILED

Con�dential © 2024 White Rook Cyber 8

C
O
N
F
ID
E
N
T
IA
L

14 A.12.3.2: Key management PASSED

15 A.12.4.3: Access control to program source code PASSED

16 A.12.5.4: Information leakage FAILED

17 A.12.5.5: Outsourced software development PASSED

18 A.12.6.1: Control of technical vulnerabilities PASSED

Con�dential © 2024 White Rook Cyber 9

C
O
N
F
ID
E
N
T
IA
L

Application Info

The details of the application are as listed below:

Project name test App 1

Application name Test project

URL https://beaglehack.com/

Test completed on 21 Oct 2024

Domain Details

Name Value

Domain name beaglehack.com

Domain status Valid

Created on 11 Jan 2023

Updated on 17 Feb 2023

Expires on 11 Jan 2028

Days to expire 1177

Con�dential © 2024 White Rook Cyber 10

C
O
N
F
ID
E
N
T
IA
L

Technical Summary

GDPR Compliance Failed Controls

A.12: Information systems acquisition, development, and

maintenance

A.12.2.2: Control of internal processing

Application Error Disclosure

OWASP 2013-A6 OWASP 2017-A3 OWASP 2021-A2 OWASP PC-C10 CWE-200

Subpart A, HIPAA-164.105 WSTG-ERRH-01 A.12.2.2 PCI v4.0-6.4.2

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

This server has a vulnerability that it displays too much information about

databases, bugs, and other technological components directly linked with the web

application while showing error. The attacker can monitor these errors to be

displayed by particular requests, either specially crafted with tools or created

manually.

Recommendations:

�. Ensure Error Messages are Not Revealing

It is important to ensure that the error messages returned by the application do

not reveal sensitive information about the application, such as the version of the

application, the database type, or the operating system. This can be done by

con�guring the application to return generic error messages instead of detailed

error messages.

For example, in ASP.NET Core, the following con�guration can be used to return

generic error messages:

Con�dential © 2024 White Rook Cyber 11

C
O
N
F
ID
E
N
T
IA
L

public void Con�gure(IApplicationBuilder app, IWebHostEnvironment env)

{

if (env.IsDevelopment())

{

app.UseDeveloperExceptionPage();

}

else

{

app.UseExceptionHandler("/Error");

app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseEndpoints(endpoints =>

{

endpoints.MapControllerRoute(

name: "default",

pattern: "{controller=Home}/{action=Index}/{id?}");

});

}

�. Disable Detailed Error Messages in Production

In production environments, it is important to disable detailed error messages, as

they can reveal sensitive information to attackers. This can be done by con�guring

the application to return generic error messages instead of detailed error

messages.

For example, in ASP.NET Core, the following con�guration can be used to return

generic error messages:

public void Con�gure(IApplicationBuilder app, IWebHostEnvironment env)

{

if (env.IsDevelopment())

{

app.UseDeveloperExceptionPage();

}

else

{

app.UseExceptionHandler("/Error");

app.UseHsts();

Con�dential © 2024 White Rook Cyber 12

C
O
N
F
ID
E
N
T
IA
L

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseEndpoints(endpoints =>

{

endpoints.MapControllerRoute(

name: "default",

pattern: "{controller=Home}/{action=Index}/{id?}");

});

}

�. Log Errors in Production

It is important to log errors in production environments, as this will allow the

development team to quickly identify and �x any issues. This can be done by

con�guring the application to log errors to a central logging system.

For example, in ASP.NET Core, the following con�guration can be used to log errors

to a central logging system:

public void Con�gure(IApplicationBuilder app, IWebHostEnvironment env,

ILoggerFactory loggerFactory)

{

loggerFactory.AddNLog();

if (env.IsDevelopment())

{

app.UseDeveloperExceptionPage();

}

else

{

app.UseExceptionHandler("/Error");

app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseEndpoints(endpoints =>

{

endpoints.MapControllerRoute(

name: "default",

pattern: "{controller=Home}/{action=Index}/{id?}");

Con�dential © 2024 White Rook Cyber 13

C
O
N
F
ID
E
N
T
IA
L

});

}

Occurrences:

Occurrence 001 Status: New

Evidence : Parent Directory

Method : GET

URL : https://beaglehack.com/docs/

A.12.3.1: Policy on the use of cryptographic controls

Possible BREACH Attack

OWASP 2013-A9 OWASP 2017-A9 OWASP 2021-A6 OWASP PC-C1 CWE-310

Subpart C, HIPAA-164.312(e)(1) WASC-04 WSTG-CLNT-10 A.12.3.1 PCI v4.0-6.2.4

Likelihood: Low

Impact: Low

Risk level: Info

Issue Description:

The BREACH (Browser Reconnaissance & Ex�ltration via Adaptive Compression of

Hypertext) attack is a security vulnerability that speci�cally targets websites using

HTTPS with compression enabled. This attack exploits the compression algorithms

employed in HTTPS to extract sensitive information, such as authentication tokens

or session cookies, from encrypted traf�c.

For a website to be vulnerable to the BREACH attack, the following conditions

must be met:

HTTP Compression Enabled : The website must use HTTP compression.

User Input Re�ected in Response Body : The application must re�ect user

input in its HTTP response body.

Con�dential © 2024 White Rook Cyber 14

C
O
N
F
ID
E
N
T
IA
L

Exposure of Secrets in Response Body : The application must expose sensitive

information (e.g., CSRF tokens) in the response body.

Recommendations:

Step 1: Disable Compression

The BREACH attack exploits the compression of HTTPS responses to extract

sensitive information. To mitigate the BREACH attack, you should disable

compression of HTTPS responses.

If you are using Apache, you can add the following con�guration to your .htaccess

�le:

<IfModule mod_headers.c>

RequestHeader append Accept-Encoding "identity;q=1.0"

</IfModule>

Step 2: Use Random CSRF Tokens

The BREACH attack relies on the attacker being able to detect when the same

CSRF token is used multiple times. To mitigate this, you should generate random

CSRF tokens for each request.

If you are using PHP, you can generate a random CSRF token with the following

code:

<?php

$csrf_token = bin2hex(random_bytes(32));

?>

Step 3: Use HTTPS Everywhere

The BREACH attack is only possible over HTTPS connections. To ensure that the

attack is not possible, you should ensure that all requests are sent over HTTPS.

If you are using Apache, you can add the following con�guration to your .htaccess

�le:

RewriteEngine On

RewriteCond %{HTTPS} off

RewriteRule ^(.*)$ https://%{HTTP_HOST}%{REQUEST_URI} [L,R=301]

Occurrences:

Occurrence 002 Status: New

Con�dential © 2024 White Rook Cyber 15

C
O
N
F
ID
E
N
T
IA
L

URL : https://beaglehack.com/

Cookie set without 'HttpOnly' �ag

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 OWASP PC-C1 CWE-104

Subpart A, HIPAA-164.105 WASC-14 WSTG-SESS-02 A.12.3.1 PCI v4.0-6.2.4

Likelihood: Low

Impact: Low

Risk level: Info

Issue Description:

If the HttpOnly attribute is set on a cookie, then the cookie's value cannot be read

or set by client-side JavaScript. This measure makes certain client-side attacks,

such as cross-site scripting, slightly harder to exploit by preventing them from

trivially capturing the cookie's value via an injected script.

Recommendations:

It is recommended to set 'HttpOnly' for all session cookies.

Occurrences:

Occurrence 003 Status: New

Cookie : PHPSESSID

URL : https://beaglehack.com

A.12.5.4: Information leakage

Information Leakage via URL query strings

Con�dential © 2024 White Rook Cyber 16

C
O
N
F
ID
E
N
T
IA
L

OWASP 2013-A6 OWASP 2017-A3 OWASP 2021-A2 CAPEC-37 CWE-200 CWE-598 WASC-13

A.12.5.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

Information exposure through query strings in URLs refers to the unintentional

disclosure of sensitive data or information such as credentials or session identi�ers,

through the parameters included in the URL.This vulnerability arises from improper

handling of data in web applications, leading to potential data leakage. Exploitation

of this vulnerability can result in unauthorized access, session hijacking, or exposure

of sensitive information to attackers.

Recommendations:

Step 1: Understand the Vulnerability The �rst step in mitigating the "Information

Leakage via URL query strings" vulnerability is to understand how it works. This

vulnerability occurs when sensitive information is included in the URL query string,

which is the part of the URL that follows the question mark (?). This information

can be easily accessed by anyone who has access to the URL, making it vulnerable

to attackers.

Step 2: Identify Sensitive Information The next step is to identify the sensitive

information that is being leaked through the URL query string. This can include

usernames, passwords, session IDs, credit card numbers, and any other con�dential

data.

Step 3: Use POST Method for Sensitive Data One of the ways to mitigate this

vulnerability is to use the POST method instead of the GET method for sending

sensitive data. The POST method sends data in the request body instead of the URL,

making it less vulnerable to attackers. This can be implemented in the following

ways:

HTML Form:

<form action="process.php" method="POST"> <input type="text" name="username">

<input type="password" name="password"> <input type="submit" value="Submit">

</form>

AJAX Request: $.ajax({ type: "POST", url: "process.php", data: { username: "John",

password: "Doe" } });

Step 4: Encrypt Sensitive Data Another way to mitigate this vulnerability is to

encrypt the sensitive data before sending it through the URL query string. This will

make it unreadable to anyone who intercepts the URL. This can be implemented

using various encryption algorithms such as AES, RSA, or SHA.

Con�dential © 2024 White Rook Cyber 17

C
O
N
F
ID
E
N
T
IA
L

Step 5: Use Server-Side Validation It is important to implement server-side

validation to ensure that only valid and expected data is accepted from the URL

query string. This will prevent attackers from injecting malicious data into the

query string. The following is an example of server-side validation using PHP:

if(isset($_POST['username']) && isset($_POST['password'])){ $username =

$_POST['username']; $password = $_POST['password'];

// Perform validation on $username and $password }

Step 6: Sanitize User Input In addition to server-side validation, it is also important

to sanitize user input to prevent any malicious code from being executed. This can

be done using functions such as htmlentities() or htmlspecialchars() in PHP.

Step 7: Use HTTPS Using HTTPS instead of HTTP can also help mitigate this

vulnerability. HTTPS encrypts the data being transmitted between the client and

the server, making it dif�cult for attackers to intercept and access sensitive

information.

Step 8: Limit Access to Sensitive Information If possible, limit access to sensitive

information in the URL query string. This can be done by implementing access

controls and only allowing authorized users to access the sensitive data.

Occurrences:

Occurrence 004 Status: New

Value : P@ssword123

Parameter : password

Url : https://beaglehack.com/vulnerabilities/brute/?

username=sampletext&password=P%40ssword123&Login=Log

in

Occurrence 005 Status: New

Value : sampletext

Parameter : username

Url : https://beaglehack.com/vulnerabilities/brute/?

username=sampletext&password=P%40ssword123&Login=Log

in

Con�dential © 2024 White Rook Cyber 18

C
O
N
F
ID
E
N
T
IA
L

A.12.2.1: Input data validation

Cross Site Scripting

OWASP 2013-A3 OWASP 2017-A7 OWASP 2021-A3 PCI V3.2-6.5.7 OWASP PC-C4 CAPEC-19

CWE-79 Subpart C, HIPAA-164.306(a)(2) ISO27001-A.14.2.5 WASC-8 WSTG-INPV-02 A.12.2.1

PCI v4.0-6.2.4

Likelihood: High

Impact: High

Risk level: Critical

Issue Description:

Cross-site Scripting (XSS) is a client-side code injection attack. Using this

technique, an attacker can execute malicious scripts into a legitimate website or

web application. This server has a vulnerability that allows an attacker to send

malicious code to the user. A browser cannot foresee the script on the website. So,

it cannot judge if a website should be trusted or not. The browser will execute the

script allowing the attacker to access any cookie or session token retained by the

browser.

Recommendations:

Step 1: Validate and Sanitize User Inputs

The �rst step in mitigating Cross Site Scripting (XSS) vulnerabilities is to ensure all

user inputs are properly validated and sanitized. This can be done by implementing

a whitelist of acceptable inputs and rejecting any input that does not match the

whitelist.

For example, if the application is expecting a name, only accept alphanumeric

characters and spaces.

function validateName(name) {

const regex = /^[A-Za-z0-9\s]+$/;

return regex.test(name);

}

Step 2: HTML Encoding

Con�dential © 2024 White Rook Cyber 19

C
O
N
F
ID
E
N
T
IA
L

The second step in mitigating XSS is to HTML encode all user inputs before

displaying them on the page. This prevents malicious scripts from executing in the

browser.

For example, if the application is displaying a user's name on the page, it should be

HTML encoded before rendering.

function htmlEncodeName(name) {

return name.replace(/&/g, '&')

.replace(/</g, '<')

.replace(/>/g, '>')

.replace(/"/g, '"')

.replace(/'/g, ''')

.replace(/\//g, '/');

}

Step 3: Content Security Policy (CSP)

The third step in mitigating XSS is to implement a Content Security Policy (CSP). A

CSP is a set of rules that specify what resources a browser is allowed to load. This

prevents malicious scripts from being loaded from untrusted sources.

For example, the following CSP will only allow scripts and styles to be loaded from

the same domain as the application.

Content-Security-Policy: default-src 'self'; script-src 'self'; style-src 'self';

Occurrences:

Occurrence 006 Status: New

Vulnerable Parameter : include

Payload : -->'"/></sCript><deTailS open x=">" ontoggle=(con�rm)

("beagle_injection_attack")``>

Method : POST

URL : https://beaglehack.com/vulnerabilities/csp/

Occurrence 007 Status: New

Vulnerable Parameter : mtxMessage

Con�dential © 2024 White Rook Cyber 20

C
O
N
F
ID
E
N
T
IA
L

Payload : <script>alert('beagle_injection_attack')</script>

Method : POST

URL : https://beaglehack.com/vulnerabilities/xss_s/

Occurrence 008 Status: New

Vulnerable Parameter : txtName

Payload : <script>alert('beagle_injection_attack')</script>

Method : POST

URL : https://beaglehack.com/vulnerabilities/xss_s/

Occurrence 009 Status: New

Vulnerable Parameter : default

Payload : <script>alert('beagle_injection_attack')</script>

Method : GET

URL : https://beaglehack.com/vulnerabilities/xss_d/?default=French

Occurrence 010 Status: New

Vulnerable Parameter : name

Payload : <script>alert('beagle_injection_attack')</script>

Method : GET

URL : https://beaglehack.com/vulnerabilities/xss_r/?

name=sampletext

MySQL Boolean-based Blind SQL Injection (SQLi)

Con�dential © 2024 White Rook Cyber 21

C
O
N
F
ID
E
N
T
IA
L

OWASP 2013-A1 OWASP 2017-A1 OWASP 2021-A3 PCI V3.2-6.5.1 OWASP PC-C3 CAPEC-66

CWE-89 Subpart C, HIPAA-164.306(a)(2) ISO27001-A.14.2.5 WASC-19

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H WSTG-INPV-05 A.12.2.1 PCI v4.0-6.2.4

Likelihood: High

Impact: High

Risk level: Critical

Issue Description:

It is a technique which relies on sending an SQL query to the database which forces

the application to return a different result depending on whether the query returns

a TRUE or FALSE result. Depending on the result, the content within the HTTP

response will change, or remain the same. This allows an attacker to infer if the

payload used returned true or false, even though no data from the database is

returned. Even though it is a slow attack this will help the attacker to enumerate

the database.

Recommendations:

Use of prepared statements (with parameterized queries)

Use of stored procedures

Whitelist input validation

Escaping all user-supplied input

Enforcing least privilege

Performing whitelist input validation as a secondary defence

Occurrences:

Occurrence 011 Status: New

Proof : dvwa

information_schema

Parameter : id

Method : POST

URL : https://beaglehack.com/vulnerabilities/sqli

Con�dential © 2024 White Rook Cyber 22

C
O
N
F
ID
E
N
T
IA
L

Occurrence 012 Status: New

Proof : dvwa

information_schema

Parameter : id

Method : POST

URL : https://beaglehack.com/vulnerabilities/sqli_blind

HTML Injection

OWASP 2013-A1 OWASP 2017-A1 OWASP 2021-A3 OWASP PC-C4 CAPEC-242 CWE-80

Subpart C, HIPAA-164.306(a)(2) WASC-08 WSTG-CLNT-03 A.12.2.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

This server is vulnerable to HTML injection that occurs when an attacker is able to

control an input point and is able to inject arbitrary HTML code into a vulnerable

web page using metacharacters. This may lead to consequences like disclosure of a

user's session cookies or it can allow the attacker to modify the page content seen

by the victims.

Recommendations:

�. Validate User Input: User input should be validated and sanitized before being

used in HTML output.

�. Encode Output: Output should be HTML encoded before being sent to the

user. This can be done using the htmlspecialchars() method in PHP, or the

HtmlEncode() method in .NET.

�. Use Parameterized Queries: Parameterized queries should be used when

accessing the database. This will ensure that user input is not interpreted as

part of the query.

Con�dential © 2024 White Rook Cyber 23

C
O
N
F
ID
E
N
T
IA
L

�. Disable Client-Side Scripts: Client-side scripts such as JavaScript should be

disabled in user input. This can be done by using the strip_tags() method in

PHP, or the DisableScripts() method in .NET.

�. Disable HTML Tags: HTML tags should be disabled in user input. This can be

done by using the strip_tags() method in PHP, or the DisableHtmlTags()

method in .NET.

Occurrences:

Occurrence 013 Status: New

Vulnerable Parameter : include

Payload : <h1>beagle_injection_attack

</h1>

Method : POST

URL : https://beaglehack.com/vulnerabilities/csp/

Occurrence 014 Status: New

Vulnerable Parameter : txtName

Payload : <h1>beagle_injection_attack

</h1>

Method : POST

URL : https://beaglehack.com/vulnerabilities/xss_s/

Occurrence 015 Status: New

Vulnerable Parameter : mtxMessage

Payload : <h1>beagle_injection_attack

</h1>

Method : POST

Con�dential © 2024 White Rook Cyber 24

C
O
N
F
ID
E
N
T
IA
L

URL : https://beaglehack.com/vulnerabilities/xss_s/

Occurrence 016 Status: New

Vulnerable Parameter : name

Payload : <h1>beagle_injection_attack

</h1>

Method : GET

URL : https://beaglehack.com/vulnerabilities/xss_r/?

name=sampletext

A.12.2.4: Output data validation

Iframe Injection

OWASP 2013-A1 OWASP 2017-A1 OWASP 2021-A3 PCI V3.2-6.5.1 OWASP PC-C5

Subpart C, HIPAA-164.306(a)(2) WSTG-INPV-05 A.12.2.4 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

The IFRAME element may be a security risk if any page on your site contains an XSS

vulnerability which can be exploited. An attacker may leverage this issue to execute

arbitrary script code in the browser of an unsuspecting user in the context of the

affected site. This can allow the attacker to steal cookie-based authentication

credentials and launch other attacks.

Recommendations:

Con�dential © 2024 White Rook Cyber 25

C
O
N
F
ID
E
N
T
IA
L

�. Validate user input: Ensure that all user input is validated for malicious

content. This can be done by using whitelisting techniques, such as only

allowing speci�c characters, and blacklisting techniques, such as blocking

certain strings.

�. Sanitize user input: Sanitize user input by using a combination of server-side

and client-side validation techniques. Server-side validation should be used to

check for malicious content, while client-side validation should be used to

ensure the data is in the correct format.

�. Use X-Frame-Options: Use the X-Frame-Options header to prevent your web

page from being loaded in an iframe. This header can be set to either DENY or

SAMEORIGIN.

�. Use CSP: Use Content Security Policy (CSP) to prevent iframe injection. CSP

can be used to block certain types of content, such as iframes, from being

loaded on your web page.

�. Monitor for suspicious activity: Monitor your web application for suspicious

activity, such as unexpected requests or responses. If you detect any

suspicious activity, investigate it immediately.

Occurrences:

Occurrence 017 Status: New

Vulnerable Parameter : txtName

Payload : <iframe src="https://xssiframeloader.pug.gs"></iframe>

Method : POST

URL : https://beaglehack.com/vulnerabilities/xss_s/

Occurrence 018 Status: New

Vulnerable Parameter : btnSign

Payload : <iframe src="https://xssiframeloader.pug.gs"></iframe>

Method : POST

URL : https://beaglehack.com/vulnerabilities/xss_s/

Con�dential © 2024 White Rook Cyber 26

C
O
N
F
ID
E
N
T
IA
L

Occurrence 019 Status: New

Vulnerable Parameter : mtxMessage

Payload : <iframe src="https://xssiframeloader.pug.gs"></iframe>

Method : POST

URL : https://beaglehack.com/vulnerabilities/xss_s/

Occurrence 020 Status: New

Vulnerable Parameter : include

Payload : <iframe src="https://xssiframeloader.pug.gs"></iframe>

Method : POST

URL : https://beaglehack.com/vulnerabilities/csp/

A.12.1.1: Security requirements analysis and speci�cation

High Memory Limit in PHP Info Page

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 CAPEC-346 CWE-213

Subpart C, HIPAA-164.308(a)(1)(i) ISO27001-A.18.1.3 WASC-13 A.12.1.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: High

Risk level: High

Issue Description:

In this sever the code-execution vulnerability may occur because the PHP module

fails to properly handle memory_limit request termination. The attacker can

leverage this issue by exploiting Memory Allocation Denial Of Service Vulnerability

and premature termination during critical code execution.

Con�dential © 2024 White Rook Cyber 27

C
O
N
F
ID
E
N
T
IA
L

Recommendations:

Updating the PHP to the latest version

Occurrences:

Occurrence 021 Status: New

Findings : The phpinfo memory_limit is set to a high value: 128M

URL : https://beaglehack.com/phpinfo.php

X-Frame-Options header not implemented

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 OWASP PC-C1 CAPEC-103 CWE-693

Subpart C, HIPAA-164.308(a)(1)(i) ISO27001-A.14.2.5 WASC-14 WSTG-CLNT-09 A.12.1.1

PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

In this webpage, X-Frame-Options header is not found. Without X Frame-Options

header the browser cannot decide the page to render in <frame> or <iframe> and

thus the site cannot ensure that their contents are not embedded in other sites.

This vulnerability leads to many attacks like Clickjacking.

Recommendations:

Step 1:

Identify the application or website which needs to be secured.

Step 2:

Add the following code to the web page header to prevent the page from being

loaded in an iFrame:

Con�dential © 2024 White Rook Cyber 28

C
O
N
F
ID
E
N
T
IA
L

<meta http-equiv="X-Frame-Options" content="deny">

Step 3:

If the application or website is using Apache, add the following code to the

.htaccess �le:

Header always append X-Frame-Options DENY

Step 4:

If the application or website is using Nginx, add the following code to the server

con�guration �le:

add_header X-Frame-Options DENY;

Step 5:

Test the changes to ensure that the page is not loaded in an iFrame.

Occurrences:

Occurrence 022 Status: New

URL : https://beaglehack.com/

Content Security Policy (CSP) header not implemented

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 CWE-16 Subpart A, HIPAA-164.105

ISO27001-A.14.2.5 WASC-15 A.12.1.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

Content Security Policy (CSP) is a computer security standard. It was introduced to

prevent cross-site scripting (XSS), clickjacking and other code injection attacks

resulting from execution of malicious content in the trusted web page context. In

Con�dential © 2024 White Rook Cyber 29

C
O
N
F
ID
E
N
T
IA
L

this application, the Content Security Policy header is not implemented. This leads

to vulnerabilities like Cross-site Scripting and related attacks. Not implementing

Content Security Policy this application missing out this extra layer of security.

Recommendations:

The mitigation for this vulnerability is to enable CSP on your website by

sending the Content-Security-Policy in HTTP response headers. The header

must instruct the browser to apply the policies you speci�ed.

Occurrences:

Occurrence 023 Status: New

URL : https://beaglehack.com/

allow_url_fopen Enabled in PHP Info Page

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 CWE-16 Subpart C, HIPAA-164.308(a)(1)(i)

WASC-13 A.12.1.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

In this server, the allow_url_fopen is enabled. The allow_url_fopen setting carries the

risk of enabling Remote File Execution, Access Control Bypass or Information

Disclosure attacks. If an attacker can inject a remote URI of their choosing into a

�le function they could manipulate an application into executing, storing or

displaying the fetched �le including those from any untrusted remote source

Recommendations:

Disable allow_url_fopen from php.ini or .htaccess.

Occurrences:

Con�dential © 2024 White Rook Cyber 30

C
O
N
F
ID
E
N
T
IA
L

Occurrence 024 Status: New

URL : https://beaglehack.com/phpinfo.php

Weak MD5 Session Hash Algorithm

OWASP 2013-A9 OWASP 2017-A9 OWASP 2021-A6 CWE-328 Subpart C, HIPAA-164.308(a)(1)(i)

WASC-11 A.12.1.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

This server uses the MD5 algorithm for session hash function. This algorithm is

vulnerable. The attacker can easily crack these hash value using a brute-force

attack.

Recommendations:

Use Slow Password Hash such as BCrypt, PBKDF2, SCrypt etc

Occurrences:

Occurrence 025 Status: New

URL : https://beaglehack.com/phpinfo.php

Cookie set without 'Secure' �ag

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 CAPEC-102 CWE-614 ISO27001-A.14.1.2

WASC-15 WSTG-SESS-02 A.12.1.1 PCI v4.0-6.2.4

Con�dential © 2024 White Rook Cyber 31

C
O
N
F
ID
E
N
T
IA
L

Likelihood: Medium

Impact: Low

Risk level: Low

Issue Description:

If the secure �ag is set on a cookie, then browsers will not submit the cookie in any

requests that use an unencrypted HTTP connection, thereby preventing the cookie

from being trivially intercepted by an attacker monitoring network traf�c. If the

secure �ag is not set, then the cookie will be transmitted in clear-text if the user

visits any HTTP URLs within the cookie's scope.

Recommendations:

The secure �ag should be set on all cookies that are used for transmitting

sensitive data when accessing content over HTTPS

Occurrences:

Occurrence 026 Status: New

Cookie : PHPSESSID

URL : https://beaglehack.com/

HTTP Strict Transport Security (HSTS) header not

implemented

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 OWASP PC-C1 CAPEC-217 CWE-523

Subpart C, HIPAA-164.312(e)(1) ISO27001-A.14.1.2 WASC-4 WSTG-CONF-07 A.12.1.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Low

Risk level: Low

Issue Description:

Con�dential © 2024 White Rook Cyber 32

C
O
N
F
ID
E
N
T
IA
L

In this website, the HTTP Strict Transport Security (HSTS) policy is not

implemented. This website is being served from not only HTTP but also HTTPS and

it lacks HSTS policy implementation.HTTP Strict Transport Security is a web

security policy mechanism to interact with complying user agents such as a web

browser using only secure HTTP connections.

Recommendations:

Con�gure your web server to use HSTS to redirect HTTP requests to HTTPS.

Occurrences:

Occurrence 027 Status: New

URL : https://beaglehack.com/

X-Content-Type-Options header not implemented

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 OWASP PC-C1 CWE-16

Subpart C, HIPAA-164.308(a)(1)(i) ISO27001-A.14.1.2 WASC-15 A.12.1.1 PCI v4.0-6.2.4

Likelihood: Low

Impact: Low

Risk level: Info

Issue Description:

The X-Content-Type-Options response HTTP header is a marker used by the server

to indicate that the Multipurpose Internet Mail Extensions types advertised in the

Content-Type headers should not be changed and be followed. It is a way to say

that the webmasters knew what they were doing. In this webpage, X Content Type

Options is not found. This application is vulnerable to Multipurpose Internet Mail

Extensions snif�ng attacks. These vulnerabilities can occur when a website allows

users to upload content to a website. This can give them the opportunity to

perform cross-site scripting and compromise the website.

Recommendations:

Con�dential © 2024 White Rook Cyber 33

C
O
N
F
ID
E
N
T
IA
L

Step 1: Add the X-Content-Type-Options header to your web application

The X-Content-Type-Options header is used to indicate that the browser should not

interpret the response as something other than the speci�ed content type.

For example, if you are serving HTML, you should add the following header:

X-Content-Type-Options: nosniff

Step 2: Con�gure your web server to add the X-Content-Type-Options

header

Depending on your web server, you need to con�gure it to add the X-Content-Type-

Options header to the response.

Apache

In Apache, you can add the X-Content-Type-Options header by adding the following

to your Apache con�guration:

Header set X-Content-Type-Options "nosniff"

Nginx

In Nginx, you can add the X-Content-Type-Options header by adding the following

to your Nginx con�guration:

add_header X-Content-Type-Options "nosniff";

Step 3: Test the con�guration

Once the X-Content-Type-Options header has been added, you should test the

con�guration to make sure that it is working correctly.

You can use a tool like curl to test the response headers:

$ curl -I https://example.com

HTTP/2 200

Content-Type: text/html; charset=utf-8

X-Content-Type-Options: nosniff

[...]

If the X-Content-Type-Options header is present in the response, then the

con�guration has been successful.

Con�dential © 2024 White Rook Cyber 34

C
O
N
F
ID
E
N
T
IA
L

Occurrences:

Occurrence 028 Status: New

URL : https://beaglehack.com/

A.10: Communications and operations management

A.10.4.1: Controls against malicious code

Remote OS Command Injection

OWASP 2013-A1 OWASP 2017-A1 OWASP 2021-A3 PCI V3.2-6.5.1 OWASP PC-C5 CAPEC-88

CWE-78 Subpart C, HIPAA-164.306(a)(2) ISO27001-A.14.2.5 WASC-31

CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H WSTG-INPV-11 A.10.4.1 PCI v4.0-6.2.4

Likelihood: High

Impact: High

Risk level: Critical

Issue Description:

This server passes unsafe user-supplied data to the system shell. The attacker can

supply operating system commands and can execute with the privileges of the

server application.

Recommendations:

Step 1: Understand the Vulnerability The �rst step in mitigating any vulnerability is

to fully understand it. In this case, Remote OS Command Injection is a type of

vulnerability where an attacker can execute arbitrary operating system commands

on a web server. This can lead to a complete compromise of the server and

potentially the entire network.

Step 2: Identify and Validate the Vulnerable Code The next step is to identify and

validate the code that is vulnerable to Remote OS Command Injection. This can be

Con�dential © 2024 White Rook Cyber 35

C
O
N
F
ID
E
N
T
IA
L

done through manual code review or using automated tools such as a vulnerability

scanner. Once the vulnerable code is identi�ed, it is important to validate that it is

indeed vulnerable by attempting to exploit it.

Step 3: Sanitize User Input The root cause of Remote OS Command Injection is

improper handling of user input. Therefore, the most effective way to mitigate this

vulnerability is to properly sanitize all user input before using it in a command. This

includes both form inputs and URL parameters.

Step 4: Use Parameterized Queries Instead of directly concatenating user input into

a command, it is recommended to use parameterized queries. This ensures that the

user input is treated as data and not as a command to be executed. Parameterized

queries can be implemented in different ways depending on the programming

language and framework being used.

Example in PHP:

// Using PDO (PHP Data Objects)

$stmt = $pdo->prepare('SELECT * FROM users WHERE username = :username');

$stmt->execute(['username' => $_POST['username']]);

$user = $stmt->fetch();

// Using mysqli

$stmt = $db->prepare('SELECT * FROM users WHERE username = ?');

$stmt->bind_param('s', $_POST['username']);

$stmt->execute();

$user = $stmt->get_result()->fetch_assoc();

Step 5: Use Whitelisting Another approach to mitigating Remote OS Command

Injection is to use whitelisting. This means only allowing a speci�c set of characters

or values to be accepted as user input. This can be done by implementing input

validation and rejecting any input that does not match the speci�ed criteria.

Example in Java:

// Only allow alphanumeric characters

if (!input.matches("^[a-zA-Z0-9]*$")) {

// Reject input and display an error message

}

Step 6: Implement Least Privilege Principle In addition to sanitizing user input, it is

important to follow the principle of least privilege. This means giving only the

necessary permissions to the user or process that is executing the command. For

example, if a web application only needs to read data from a database, it should not

have permissions to write or execute commands on the server.

Step 7: Keep Software and Libraries Up to Date Outdated software and libraries

often contain known vulnerabilities that can be exploited by attackers. Therefore, it

is important to keep all software and libraries used in the web application up to

Con�dential © 2024 White Rook Cyber 36

C
O
N
F
ID
E
N
T
IA
L

date. This includes the web server, programming language, and any third-party

libraries.

Occurrences:

Occurrence 029 Status: New

Parameter : ip

Attack : ;id;

Method : POST

URL : https://beaglehack.com/vulnerabilities/exec/

OUT OF BAND VULNERABILITY

Blind Remote Code Execution

OWASP 2013-A1 OWASP 2017-A1 OWASP 2021-A3 PCI V3.2-6.5.1 OWASP PC-C3 CAPEC-88

CWE-78 Subpart C, HIPAA-164.306(a)(2) ISO27001-A.14.2.5 WASC-31 WSTG-INPV-12 A.10.4.1

PCI v4.0-6.2.4

Likelihood: High

Impact: High

Risk level: Critical

Issue Description:

Out of Band(OOB) Remote Code Execution is performed by sending a DNS request

to a server, which occurs when input data is interpreted as an operating system

command. By this, an attacker can execute arbitrary commands on the system and

gain unauthorized access.

Recommendations:

Remote code execution attacks can exploit various vulnerabilities, so protecting

against them requires a multi-faceted approach. Here are some best practices to

detect and mitigate RCE attacks:

Con�dential © 2024 White Rook Cyber 37

C
O
N
F
ID
E
N
T
IA
L

Sanitize inputs—attackers often exploit deserialization and injection

vulnerabilities to perform RCE. Validating and sanitizing user-supplied input

before allowing the application to use it will help prevent various RCE attack

types.

Manage memory securely—attackers can exploit memory management

issues like buffer over�ows. It is important to run regular vulnerability scans

for all applications to identify buffer over�ow and memory-related

vulnerabilities to remediate issues before an attacker can perform RCE.

Inspect traf�c—RCE attacks involve attackers manipulating network traf�c by

exploiting code vulnerabilities to access a corporate system. Organizations

should implement a network security solution that detects remote access

and control of their systems and blocks attempted exploits of vulnerable

applications.

Control access—RCE gives attackers a foothold in the target network that

they can use to expand access and execute more damaging attacks. Access

controls and techniques like network segmentation, zero trust policies, and

access management platforms can help prevent lateral movement, ensuring

that attackers cannot escalate an attacker after gaining initial access to the

target system.

Occurrences:

Occurrence 030 Status: New

Request Body : ip=sampletext&Submit=Submit

Parameter : ip

Method : POST

URL : https://beaglehack.com/vulnerabilities/exec/

Local File Inclusion

OWASP 2013-A4 OWASP 2017-A5 OWASP 2021-A1 PCI V3.2-6.5.8 CAPEC-252 CWE-22

Subpart C, HIPAA-164.306(a)(2) ISO27001-A.14.2.5 WASC-33 WSTG-INPV-11 A.10.4.1

PCI v4.0-6.2.4

Con�dential © 2024 White Rook Cyber 38

C
O
N
F
ID
E
N
T
IA
L

Likelihood: Medium

Impact: High

Risk level: High

Issue Description:

This server allows an attacker to include a �le, usually exploiting a "dynamic �le

inclusion" mechanisms implemented in the target application. This is due to the

use of user-supplied input without proper validation.

Recommendations:

�. Enforce a Whitelist

The best way to mitigate the risk of Local File Inclusion (LFI) is to create a whitelist

of acceptable �les and directories that can be included in the application. This will

ensure that only legitimate �les are included in the application and no malicious

�les can be included.

For example, in PHP you can use the is_�le function to check if a �le exists and is a

regular �le before including it:

if (is_�le($_GET['�le'])) {

include($_GET['�le']);

}

�. Sanitize User Inputs

In order to prevent malicious inputs from being passed to the application, it is

important to sanitize user inputs. This should be done using a whitelist approach,

where only speci�c characters are allowed.

For example, in PHP you can use the preg_replace function to strip any characters

that are not allowed in the user input:

$�le = preg_replace('/[^a-zA-Z0-9_\-\.]/', ' ', $_GET['�le']);

�. Disable PHP File Uploads

If your application allows users to upload �les, it is important to disable the ability

to upload PHP �les. This will prevent malicious �les from being uploaded and

included in the application.

For example, in PHP you can use the upload_max_�lesize setting to limit the

maximum size of uploaded �les:

Con�dential © 2024 White Rook Cyber 39

C
O
N
F
ID
E
N
T
IA
L

upload_max_�lesize = 0

�. Disable Remote File Inclusion

It is also important to disable the ability to include remote �les in the application.

This will prevent malicious remote �les from being included in the application.

For example, in PHP you can use the allow_url_include setting to disable remote

�le inclusion:

allow_url_include = 0

�. Disable Directory Traversal

Finally, it is important to disable the ability to traverse directories in the application.

This will prevent malicious �les from being included in the application.

For example, in PHP you can use the open_basedir setting to restrict access to

speci�c directories:

open_basedir = /var/www/html

Occurrences:

Occurrence 031 Status: New

Parameter : page

Payload : /etc/passwd

Method : GET

URL : https://beaglehack.com/vulnerabilities/�/?page=�le1.php

Upload Temp Directory accessible is Everyone in PHP Info

Page

OWASP 2013-A1 OWASP 2017-A1 OWASP 2021-A3 Subpart A, HIPAA-164.105 WASC-14 A.10.4.1

PCI v4.0-6.2.4

Con�dential © 2024 White Rook Cyber 40

C
O
N
F
ID
E
N
T
IA
L

Likelihood: High

Impact: Medium

Risk level: High

Issue Description:

This server has a vulnerability that the Upload tmp dir is accessible for everyone.

The upload_tmp_dir allows you to specify where uploaded �les should be saved

until the handling script moves them to a more permanent location. If this �le is

within the document root of the website and accessible to system users other than

PHP's user, it could be modi�ed or overwritten while PHP is processing it. By

default, upload_tmp_dir is set to the system's standard temporary directory, which

can typically be accessed by all system users.

Recommendations:

Upload tmp dir outside the document root of your web site.

Upload tmp dir to not readable or writable by any other system users.

Occurrences:

Occurrence 032 Status: New

URL : https://beaglehack.com/phpinfo.php

Clickjacking

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 CAPEC-103 CWE-1021

Subpart C, HIPAA-164.308(a)(1)(i) WASC-15 WSTG-CLNT-09 A.10.4.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

Con�dential © 2024 White Rook Cyber 41

C
O
N
F
ID
E
N
T
IA
L

Clickjacking is a malicious technique of tricking a user into clicking on a link, thus

potentially revealing con�dential information or taking control of their computer

while clicking on seemingly innocuous web pages. On this page, the attackers will

use multiple clear or opaque layers to trick a user into clicking on a button or link

on another page when they were aiming to click on the top level page. This leads to

leakage of sensitive information.

Recommendations:

Step 1: Understand Clickjacking Clickjacking is a type of web application

vulnerability where an attacker tricks a user into clicking on a hidden or invisible

element on a webpage, which can lead to unintended actions being performed by

the user. This can include clicking on buttons, links, or even entering sensitive

information.

Step 2: Implement X-Frame-Options Header The X-Frame-Options header is a

security feature that helps prevent clickjacking attacks by limiting the ability of a

webpage to be embedded in an iframe. This header can be implemented in your

web server con�guration or by adding the following code to the header section of

your web page:

X-Frame-Options: SAMEORIGIN

This will restrict the page from being loaded in an iframe from a different origin,

preventing clickjacking attacks.

Step 3: Use Content Security Policy (CSP) Content Security Policy (CSP) is an

additional layer of security that helps prevent clickjacking attacks. It allows web

developers to specify which resources can be loaded on a webpage, thereby

preventing malicious scripts from being loaded. To implement CSP, add the

following code to the header section of your web page:

Content-Security-Policy: frame-ancestors 'self'

This will restrict the page from being loaded in an iframe from any other origin,

except for the same origin.

Step 4: Implement Frame-Busting Script A frame-busting script is a piece of code

that can be added to your web page to prevent it from being loaded in an iframe.

This can be done by adding the following code to the header section of your web

page:

if (top.location != self.location) { top.location = self.location; }

This script will redirect the page to the top-level window if it is being loaded in an

iframe, thereby preventing clickjacking attacks.

Step 5: Use X-Content-Type-Options Header The X-Content-Type-Options header is a

security feature that helps prevent clickjacking attacks by limiting the ability of a

webpage to be loaded in a different content type. To implement this header, add

the following code to the header section of your web page:

X-Content-Type-Options: nosniff

Con�dential © 2024 White Rook Cyber 42

C
O
N
F
ID
E
N
T
IA
L

This will prevent the browser from guessing the content type of the page, thereby

preventing clickjacking attacks.

Step 6: Implement Frame-Killer Script A frame-killer script is a piece of code that

can be added to your web page to prevent it from being loaded in an iframe. This

can be done by adding the following code to the header section of your web page:

if (window.top != window.self) { window.top.location = window.self.location; }

This will redirect the page to the top-level window if it is being loaded in an iframe,

thereby preventing clickjacking attacks.

Occurrences:

Occurrence 033 Status: New

URL : https://beaglehack.com/

�le_uploads in on in PHP Info Page

OWASP 2013-A5 OWASP 2017-A6 OWASP 2021-A5 CAPEC-17 CWE-434

Subpart A, HIPAA-164.105 WASC-14 WSTG-BUSL-09 A.10.4.1 PCI v4.0-6.2.4

Likelihood: Medium

Impact: Medium

Risk level: Medium

Issue Description:

In this server, the PHP �le upload is on. This leads to unrestricted �les to upload to

the server. This vulnerability may cause attacks like denial of service.

Recommendations:

Restricting �le types accepted for upload.

Checking the �le extension.

Using the whitelist approach.

Occurrences:

Con�dential © 2024 White Rook Cyber 43

C
O
N
F
ID
E
N
T
IA
L

Occurrence 034 Status: New

URL : https://beaglehack.com/phpinfo.php

A.10.7.4: Security of system documentation

Directory Traversal

OWASP 2013-A7 OWASP 2017-A5 OWASP 2021-A1 CAPEC-213 CWE-22

Subpart C, HIPAA-164.308(a)(1)(ii)(B) WASC-33 WSTG-ATHZ-01 A.10.7.4 PCI v4.0-6.2.4

Likelihood: High

Impact: High

Risk level: Critical

Issue Description:

Directory traversal is an HTTP attack that allows attackers to access restricted

directories. It also executes commands outside of the web server’s root directory.

The access to �les is not limited by system operational access control. This leads to

Directory traversal attacks, that aims to access �les and directories that are stored

outside the web root folder. The server having this vulnerability will allow an

attacker to read any �les from the server. This vulnerability will also allow the

attacker to read or include �les server or directories in the server. This can have

major repercussions for the web applications.

Recommendations:

�. Enforce Input Validation: All user input should be validated for malicious

characters like ../ and ..\ which are used to traverse directories. If any of these

characters are detected, the application should reject the input and return an

appropriate error message.

�. Restrict Access to Directories: It is important to ensure that only authorized

users have access to sensitive directories. This can be done by con�guring the

web server to deny access to certain directories. For example, in Apache, the

.htaccess �le can be used to deny access to certain directories.

Con�dential © 2024 White Rook Cyber 44

C
O
N
F
ID
E
N
T
IA
L

<Directory /var/www/html/securedir>

Order Deny,Allow

Deny from all

</Directory>

�. Enforce Strong Authentication: It is important to ensure that only

authenticated users have access to sensitive directories. This can be done by

implementing strong authentication mechanisms like two-factor

authentication.

�. Implement Security Logging: It is important to monitor the application for

any suspicious activities. This can be done by implementing logging

mechanisms that log all user activities. This will help in detecting any

malicious activities in the application.

Occurrences:

Occurrence 035 Status: New

Parameter : page

Attack : /etc/passwd

Method : GET

URL : https://beaglehack.com/vulnerabilities/�/?

page=%2Fetc%2Fpasswd

GDPR Compliance Passed Controls

A.10.3.2: System acceptance

A.11.3.1: Password use

A.11.4.4: Remote diagnostic and con�guration port protection

A.11.4.6: Network connection control

A.11.5.3: Password management system

A.11.5.4: Use of system utilities

A.11.5.5: Session time-out

A.11.6.1: Information access restriction

A.11.6.2: Sensitive system isolation

Con�dential © 2024 White Rook Cyber 45

C
O
N
F
ID
E
N
T
IA
L

A.12.3.2: Key management

A.12.4.3: Access control to program source code

A.12.5.5: Outsourced software development

A.12.6.1: Control of technical vulnerabilities

GDPR Compliance NA Controls

A.10.1.1: Documented operating procedures

A.10.1.2: Change management

A.10.1.3: Segregation of duties

A.10.1.4: Separation of development, test, and operational facilities

A.10.2.1: Service delivery

A.10.2.2: Monitoring and review of third party services

A.10.2.3: Managing changes to third party services

A.10.3.1: Capacity management

A.10.4.1: Controls against malicious code

A.10.4.2: Controls against mobile code

A.10.5.1: Information back-up

A.10.6.1: Network controls

A.10.6.2: Security of network services

A.10.7.1: Management of removable media

A.10.7.2: Disposal of media

A.10.7.3: Information handling procedures

A.10.7.4: Security of system documentation

A.10.8.1: Information exchange policies and procedures

A.10.8.2: Exchange agreements

A.10.8.3: Physical media in transit

A.10.8.4: Electronic messaging

A.10.8.5: Business information systems

A.10.9.1: Electronic commerce

A.10.9.2: Online transactions

A.10.9.3: Publicly available information

A.11.1.1: Access control policy

Con�dential © 2024 White Rook Cyber 46

C
O
N
F
ID
E
N
T
IA
L

A.11.2.1: User registration

A.11.2.2: Privilege management

A.11.2.3: User password management

A.11.2.4: Review of user access rights

A.11.3.2: Unattended user equipment

A.11.3.3: Clear desk and clear screen policy

A.11.4.1: Policy on use of network services

A.11.4.2: User authentication for external connections

A.11.4.3: Equipment identi�cation in networks

A.11.4.5: Segregation in networks

A.11.4.7: Network routing control

A.11.5.1: Secure log-on procedures

A.11.5.2: User identi�cation and authentication

A.11.5.6: Limitation of connection time

A.11.7.1: Mobile computing and communications

A.11.7.2: Teleworking

A.12.2.2: Control of internal processing

A.12.2.3: Message integrity

A.12.4.1: Control of operational software

A.12.4.2: Protection of system test data

A.12.5.1: Change control procedures

A.12.5.2: Technical review of applications after operating system changes

A.12.5.3: Restrictions on changes to software packages

Con�dential © 2024 White Rook Cyber 47

Conclusion

This application complies with 13 out of 21 controls in the GDPR scan.

This GDPR compliance report is prepared following the penetration

test on test App 1 and the result will only cover as far as the “black-box”

or “grey-box” testing methods allow.

Visit the of�cial website of the GDPR Council of ER for a complete copy

of the General Data Protection Regulation (EU) (GDPR):

https://data.consilium.europa.eu/doc/document/ST-5419-2016-

INIT/en/pdf.

The sub-requirements associated with the GDPR guidelines on the

application security standards determine the passing or failure of tests

mentioned in this document. All other sub-requirements that do not

belong to the criteria are not considered in this report.

Con�dential © 2024 White Rook Cyber 48

